

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO COORDENAÇÃO DE GRADUAÇÃO EM ENGENHARIA CIVIL UNIDADE VARGINHA

## PLANO DE ENSINO

DISCIPLINA: Física II CÓDIGO: G08FIS2

VALIDADE: Início: 02/2019 Término:

Carga Horária: Total: 60 horas/aula Semanal: 4 horas/aula Créditos: 4

Modalidade: Teórica

Classificação do Conteúdo pelas DCN: Básica

### Ementa:

Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico e lei de Gauss; potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua; campo magnético; lei de Ampère; indução eletromagnética; lei de Faraday; ondas eletromagnéticas; lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada.

| Cursos           | Período | Eixo                     | Obrig. | Optativa |
|------------------|---------|--------------------------|--------|----------|
| Engenharia Civíl | 3°      | Eixo 02:Física e Quimica | Sim    | Não      |

Departamento/Coordenação: Departamento de Formação Geral

## **INTERDISCIPLINARIDADES**

| Pré-requisito                             | Código   |
|-------------------------------------------|----------|
| Física I                                  | G08FIS1  |
| Cálculo II                                | G08CAL2  |
| Disciplinas para as quais é co-requisito  |          |
| Física Experimental I                     | G08FISE1 |
|                                           |          |
| Disciplinas para as quais é pré-requisito |          |
| Física III                                | GEOFIS3  |
| Fenômenos de Transporte B                 | GE08FENT |
| Instalações Elétricas Prediais            | GE08INSE |

| Objet | Objetivos: A disciplina deverá possibilitar ao estudante                           |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1     | conhecer as equações de Maxwell na formulação integral;                            |  |  |  |  |  |  |
|       | resolver problemas elementares envolvendo campos elétricos e/ou campos magnéticos; |  |  |  |  |  |  |
| 3     | compreender o funcionamento de dispositivos elétricos e eletrônicos por meio das   |  |  |  |  |  |  |



MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO COORDENAÇÃO DE GRADUAÇÃO EM ENGENHARIA CIVIL UNIDADE VARGINHA

# PLANO DE ENSINO

leis fundamentais do eletromagnetismo.

|                                               | Carga-horária |
|-----------------------------------------------|---------------|
| Unidades de Ensino                            | Horas/aula    |
| 1. O CAMPO ELÉTRICO E A LEI DE GAUSS          | Tioras/auta   |
| II O O AMINI O ELETTRIGO E A ELI DE OAGOO     | 4.0           |
| 1.1. Carga elétrica e máteria.                | 12            |
| 1.2. Lei de Coulomb.                          |               |
| 1.3. O campo elétrico.                        |               |
| 1.4. Fluxo elétrico.                          |               |
| 1.5. Lei de Gauss.                            |               |
| 2. O POTENCIAL ELÉTRICO E CIRCUITOS ELÉTRICOS |               |
| 2.1. O potencial elétrico.                    | 14            |
| 2.2. Capitância e dielétricos.                | 14            |
| 2.3. Corrente elétrica.                       |               |
| 2.4. Resistência elétrica.                    |               |
| 2.5. Força eletromotriz.                      |               |
| 2.6. Circuitos de corrente contínua.          |               |
| ,                                             |               |
| 3. O CAMPO MAGNÉTICO E A LEI DE AMPÈRE        |               |
| <b>3.1.</b> O campo magnético.                | 16            |
| 3.2. O efeito Hall.                           |               |
| 3.3. A lei de Biot-Savart.                    |               |
| 3.4. A lei de Ampère.                         |               |
| 4. O CAMPO MAGNÉTICO E A LEI DE FARADAY       |               |
| 4.1. Introdução eletromagnética.              |               |
| <b>4.2.</b> A lei de Faraday.                 | 18            |
| 4.3. A lei de Lenz.                           |               |
| 4.4. Indutância e energia do campo magnético. |               |
| <b>4.5.</b> Circuitos de corrente alternada.  |               |
| <b>4.6.</b> Ondas eletromagnéticas.           |               |
| <b>4.7.</b> A lei de Gauss do Magnetismo.     |               |
| <b>4.8.</b> Síntese das equações de Maxwell.  |               |
|                                               |               |
| TOTAL                                         | 60            |



MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO COORDENAÇÃO DE GRADUAÇÃO EM ENGENHARIA CIVIL UNIDADE VARGINHA

# PLANO DE ENSINO

| Bibliografia Básica |                                                                            |  |
|---------------------|----------------------------------------------------------------------------|--|
| 1                   | HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física. 9. ed. Rio    |  |
|                     | de Janeiro: LTC, 2012. 3 v.                                                |  |
| 2                   | YOUNG, H.D.; et al. <b>Física.</b> 12. ed. São Paulo: Pearson, 2009. 3 v.  |  |
| 3                   | TIPLER, P.; MOSCA, G. Física para cientistas e engenheiros: eletricidade e |  |
|                     | magnetismo. 6. ed. Rio de Janeiro: LTC, 2009. 2 v.                         |  |

| Biblio | ografia Complementar                                                        |
|--------|-----------------------------------------------------------------------------|
| 1      | HALLIDAY, D.; RESNICK, R.; KRANE, K. S. Física. 5. ed. Rio de Janeiro: LTC, |
|        | 2004. 3 v.                                                                  |
| 2      | FEYNMAN, R.P.; LEIGHTON, R.B.; SANDS, M. Lições de física de Feynman.       |
|        | Porto Alegre: Bookman, 2008. 2 v.                                           |
| 3      | NUSSENZVEIG, H.M. Curso de física básica: eletromagnetismo. 2. ed. São      |
|        | Paulo, Edgard Blucher, 2015. 3 v.                                           |
| 4      | CHAVES, A. Física básica : eletromagnetismo Rio de Janeiro, LTC, 2007       |
| 5      | SERWAY, A. R. et al. Princípios de Física, vol. III                         |
|        | eletromagnetismo, São Paulo: Cengage Learning, c2015.                       |

OBS.: Disciplina equalizada pela Resolução CGRAD 011/13

Varginha (MG), 30 de novembro de 2019.

Professor Luiz Laércio Lopes Coordenador Aellington Freire de Araújo