

#### MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

### Plano de Ensino

| CAMPUS VIII - Varginha                       |                    |
|----------------------------------------------|--------------------|
| <b>DISCIPLINA</b> : Fenômenos de Transportes | CÓDIGO:G08FTRA0.01 |

Início: 01/2024

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas/aula Créditos: 04

Natureza: Teórica

Área de Formação - DCN: Básica

### Competências/habilidades a serem desenvolvidas:

Formular e conceber soluções desejáveis de engenharia, analisando e compreendendo os usuários dessas soluções e seu contexto:

- a) Ser capaz de utilizar técnicas adequadas de observação, compreensão, registro e análise das necessidades dos usuários e de seus contextos sociais, culturais, legais, ambientais e econômicos:
- b) Formular, de maneira ampla e sistêmica, questões de engenharia, considerando o usuário e seu contexto, concebendo soluções criativas, bem como o uso de técnicas adequadas.

Conceber, projetar e analisar sistemas, produtos (bens e serviços), componentes ou processos:

- a) Ser capaz de conceber e projetar soluções criativas, desejáveis e viáveis, técnica e economicamente, nos contextos em que serão aplicadas;
- b) Projetar e determinar os parâmetros construtivos e operacionais para as soluções de Engenharia;
- c) Aplicar conceitos de gestão para planejar, supervisionar, elaborar e coordenar projetos e serviços de Engenharia.

Elaborar estudos hidrológicos visando a garantia da sustentabilidade dos recursos hídricos. Projetar obras hidráulicas e de saneamento considerando aspectos econômicos, sociais e ambientais.

Departamento que oferta a disciplina: Departamento de Engenharia Civil

#### Ementa:

Introdução aos fenômenos de transporte. Conceitos fundamentais. Definição e características dos fluidos. Estática dos fluidos. Análise de volume de controle. Equações de conservação da massa, quantidade de movimento e termodinâmica. Dinâmica dos fluídos não viscosos e viscosos. Escoamentos internos e externos. Definição da equação de Bernoulli. Perda de carga. Medidores de pressão e vazão. Processos de transferência de calor e massa. Condução, convecção e radiação. Analogia elétrica. Correlações empíricas. Trocadores de calor.

| Curso(s)         | Período | Eixo                              | Obrigatória | Optativa |
|------------------|---------|-----------------------------------|-------------|----------|
| Engenharia Civil | 5°      | Hidrotecnia e Recursos Ambientais | Х           |          |



## MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

# Plano de Ensino

### **INTERDISCIPLINARIDADES**

| Prerrequisitos                                                        |           |  |
|-----------------------------------------------------------------------|-----------|--|
| Cálculo com Funções de Várias Variáveis I; Fundamentos de Oscilações, | Fluidos e |  |
| Termodinâmica (OFT)                                                   |           |  |
| Correquisitos                                                         |           |  |
| -                                                                     |           |  |

| Obj  | Objetivos: A disciplina deverá possibilitar ao estudante                                               |  |  |
|------|--------------------------------------------------------------------------------------------------------|--|--|
| 1    | Conhecer os princípios básicos e as leis que regem os fenômenos de transporte;                         |  |  |
| 2    | Resolver problemas de engenharia envolvendo fenômenos de transporte;                                   |  |  |
|      | Aplicar os conceitos de fenômenos de transportes em outras áreas correlatas da engenharia;             |  |  |
| 1 /1 | Desenvolver o pensamento econômico e sustentável da aplicação de fenômenos de transporte na engenharia |  |  |

| Unidades de ensino |                                                                                                                                                                                                                                                                                        | Carga-horária<br>Horas/aula |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1                  | INTRODUÇÃO E CONCEITOS  1.1. Conceitos de fenômenos de transporte; 1.2. Mecânica dos fluidos e aplicações; 1.3. Definição de fluido; 1.4. Equações básicas; 1.5. Sistema e volume de controle; 1.6. Lagrange e Euler; 1.7. Dimensões e unidades.                                       | 10                          |
| 2                  | CARACTERÍSTICAS DOS FLUIDOS  2.1. Fluido contínuo; 2.2. Propriedades dos fluídos; 2.3. Campo de velocidade, aceleração e tensão; 2.4. Regime permanente/transitório; 2.5. Linhas de corrente, emissão e trajetórias; 2.6. Fluido Newtoniano e não Newtoniano; 2.7. Tensão superficial. | 10                          |
| 3                  | ESTÁTICA DOS FLUIDOS  3.1. Equação básica da estática dos fluidos; 3.2. Variação de pressão no fluido em repouso; 3.3. Atmosfera padrão; 3.4. Esforços sobre corpos submersos; 3.5. Empuxo hidrostático; 3.6. Flutuação e estabilidade.                                                | 14                          |



## MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

# Plano de Ensino

| 4 | DINÂMICA DOS FLUIDOS  4.1. Volume de controle inercial e diferencial; 4.2. Conservação de massa, quantidade de movimento; 4.3. Equação de Euler e Bernoulli; 4.4. Escoamento laminar e turbulento em tubos; 4.5. Diagrama de Moody e a equação de Colebrook;                                                                    | 14 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | <ul> <li>4.6. Perdas localizadas e distribuídas;</li> <li>4.7. Medidores de vazão: tubo de Pitot, placa de orifício, Venturi e bocal.</li> <li>TRANSMISSÃO DE CALOR E MASSA</li> </ul>                                                                                                                                          |    |
| 5 | <ul> <li>5.1. Conceitos gerais;</li> <li>5.2. Condução, convecção e radiação;</li> <li>5.3. Transferência de calor através de paredes planas/curvas;</li> <li>5.4. Transferência de calor através em tubos;</li> <li>5.5. Analogia elétrica;</li> <li>5.6. Correlações empíricas;</li> <li>5.7. Trocadores de calor.</li> </ul> | 12 |
|   | Total                                                                                                                                                                                                                                                                                                                           | 60 |

| Bib | Bibliografia Básica                                                              |  |  |
|-----|----------------------------------------------------------------------------------|--|--|
| 1   | FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J. Introdução à mecânica dos          |  |  |
|     | fluidos. 9a ed., Editora: LTC, 2018.                                             |  |  |
|     | CENGEL, Y. A.; CIMBALA, J. M. Mecânica dos Fluidos: Fundamentos e Aplicações. 3ª |  |  |
|     | ed., Editora: AMGH, 2015.                                                        |  |  |
| 3   | INCROPERA, F. P.; LAVINE, A. S. Fundamentos de transferência de calor e de       |  |  |
|     | massa. 8 <sup>a</sup> ed., Editora: LTC, 2019.                                   |  |  |

| Bibliografia Complementar |                                                                                                                                    |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                         | CENGEL, Y. A. Transferência de calor e massa: uma abordagem prática. 4ª ed.,                                                       |  |  |
| !                         | Editora: AMGH, 2012.                                                                                                               |  |  |
| 2                         | WHITE, F. M. <b>Mecânica dos fluidos.</b> 8ª ed., Editora: AMGH, 2018.                                                             |  |  |
|                           | ZABADAL, J. R. S.; RIBEIRO, V. G. Fenômenos de transportes: fundamentos e                                                          |  |  |
| ٥                         | ZABADAL, J. R. S.; RIBEIRO, V. G. <b>Fenômenos de transportes:</b> fundamentos e métodos. 1ª ed., Editora: Cengage Learning, 2016. |  |  |
| 4                         | BRUNETTI, F. <b>Mecânica dos fluidos</b> . 2ª ed. Editora: Pearson Universidades, 2008.                                            |  |  |
| 5                         | BIRD, R. B; STEWART, W. E.; LIGHTFOOT, E. N. Fenômenos de Transporte.                                                              |  |  |
|                           | BIRD, R. B; STEWART, W. E.; LIGHTFOOT, E. N. <b>Fenômenos de Transporte.</b> Edição:2ª ed. rev. ampl., Editora: LTC, 2004          |  |  |